Product Description

GL Aluminum alloy double diaphragm clamping coupling

Description of   GL Aluminum alloy double diaphragm clamping coupling
>High torque rigidity, can accurately control the rotation of the shaft, can carry out high-precision control
>Designed for servo and stepping motor
>No gap between the shaft and sleeve connection, general for positive and negative rotation
>Low inertia, suitable for high speed operation
>The diaphragm is made of spring steel with excellent fatigue resistance
>Fastening method of clamping screw

Dimensions of  GL Aluminum alloy double diaphragm clamping coupling

model parameter common bore diameter d1,d2 ΦD L LF LP d3 S F M tightening screw torque
(N.M)
GL-19X27 3,4,5,6,6.35,7,8 19 27 9.1 5.2 Φ9 1.8 3.3 M2.5 1
GL-26X35 5,6,6.35,7,8,9,9.525,10,11,12,14 26 35 11.65 6.5 Φ12.5 2.6 3.9 M3 1.5
GL-32X41 5,6,6.35,7,8,9,9.525,10,11,12,12.7,14,15, 32 45 12.25 9.5 Φ15 3.5 3.85 M3 1.5
GL-34X45 5,6,6.35,7,8,9,9.525,10,11,12,12.7,14,15,16 34 45 14.25 9.5 Φ16 4.5 4.85 M4 2.5
GL-39X50 8,9,9.525,10,11,12,12.7,14,15,16,17,18,19 39 50 14.9 11.2 Φ9.3 4.5 5 M4 2.5
GL-44X50 8,9,9.525,10,11,12,12.7,14,15,16,17,18,19,20,22 44 50 14.9 11.2 Φ2.5 4.5 5 M4 2.5
GL-50X63 8,9,9.525,10,11,12,12.7,14,15,16,17,18,19,20,22,24,25 50 63 20.6 12.5 Φ23 4.8 6 M5 7
GL-56X64 10,12,14,15,16,17,18,19,20,22,24,25,28,30,32 56 64 19.75 13.5 Φ2.5 5.5 6.4 M5 7
GL-68X75 12,14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 68 75 23.35 15.7 Φ38.3 6.3 7.7 M6 12
GL-82X98 17,18,19,20,22,24,25,28,30,32,35,38,40,42 82 98 30 22 Φ45.5 8 9.7 M8 20

 

model parameter Rated torque
(N.M)*
allowable eccentricity
(mm)*
allowable deflection angle
(°)*
allowable axial deviation
(mm)*
maximum speed
rpm
static torsional stiffness
(N.M/rad)
moment of inertia
(Kg.M2)
Material of shaft sleeve Material of shrapnel surface treatment weight
(g)
GL-19X27 1 0.12 1.5 ±0.18 10000 170 9.1×10-7 High strength aluminum alloy SUS304Spring steel Anodizing treatment 14.6
GL-26X35 1.5 0.15 1.5 ±0.3 10000 820 3.0×10-6 37
GL-32X41 2 0.17 1.5 ±0.36 10000 1750 1.0×10-5 67
GL-34X45 3 0.17 1.5 ±0.36 10000 1860 1.1×10-5 77
GL-39X50 6 0.22 1.5 ±0.45 10000 2860 3.0×10-5 118
GL-44X50 9 0.22 1.5 ±0.54 10000 3300 3.8×10-5 144
GL-50X63 18 0.1 1.5 ±0.54 10000 3300 3.0×10-5 235
GL-56X64 25 0.27 1.5 ±0.72 10000 9480 1.6×10-4 318
GL-68X75 60 0.31 1.5 ±0.8 9000 19000 2.0×10-4 492
GL-82X98 100 0.55 1.5 ±0.8 8000 28450 2.5×10-4 1013

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

How Do Rigid Couplings Compare to Other Types of Couplings in Terms of Performance?

Rigid couplings offer specific advantages and disadvantages compared to other types of couplings, and their performance depends on the requirements of the application:

1. Performance: Rigid couplings provide excellent torque transmission capabilities and are best suited for applications that demand precise and efficient power transfer. They have minimal backlash and high torsional stiffness, resulting in accurate motion control.

2. Misalignment Tolerance: Rigid couplings cannot tolerate misalignment between shafts. They require precise shaft alignment during installation, which can be time-consuming and may result in increased downtime during maintenance or repairs.

3. Vibration Damping: Rigid couplings offer no damping of vibrations, which means they may not be suitable for systems that require vibration isolation or shock absorption.

4. Maintenance: Rigid couplings are generally low maintenance since they have no moving parts or flexible elements that can wear out over time. Once properly installed, they can provide reliable performance for extended periods.

5. Space Requirements: Rigid couplings are compact and do not add much length to the shaft, making them suitable for applications with limited space.

6. Cost: Rigid couplings are usually more economical compared to some advanced and specialized coupling types. Their simpler design and lower manufacturing costs contribute to their affordability.

7. Application: Rigid couplings are commonly used in applications where shafts are precisely aligned and no misalignment compensation is necessary. They are prevalent in precision machinery, robotics, and applications that require accurate motion control.

In contrast, flexible couplings, such as elastomeric, jaw, or beam couplings, are designed to accommodate misalignment, dampen vibrations, and provide some degree of shock absorption. Their performance is ideal for systems where shafts may experience misalignment due to thermal expansion, shaft deflection, or dynamic loads.

In summary, rigid couplings excel in applications that demand precise alignment and high torque transmission, but they may not be suitable for systems that require misalignment compensation or vibration damping.

rigid coupling

What Industries Commonly Use Rigid Couplings for Power Transmission?

Rigid couplings are widely used in various industries for power transmission applications that require a solid and reliable connection between rotating shafts. Some of the industries that commonly utilize rigid couplings include:

  • Manufacturing: In the manufacturing industry, rigid couplings are employed in a wide range of equipment, such as conveyors, mixers, pumps, compressors, and machine tools. These couplings ensure precise power transmission and alignment, making them ideal for maintaining accuracy in manufacturing processes.
  • Material Handling: Material handling equipment, including cranes, hoists, and elevators, often rely on rigid couplings to transfer power between shafts efficiently. Rigid couplings provide a robust connection that can handle the heavy loads and continuous operation common in material handling applications.
  • Automotive: The automotive industry employs rigid couplings in various automotive systems, including drive shafts, transmissions, and steering systems. Rigid couplings contribute to the overall performance and reliability of these components, ensuring smooth power transfer and minimizing vibration.
  • Mining and Construction: In the mining and construction industries, rugged and durable power transmission components are crucial. Rigid couplings are used in equipment like crushers, mills, and heavy-duty conveyors, where they can withstand the harsh conditions and heavy loads commonly found in these applications.
  • Oil and Gas: The oil and gas industry often utilizes rigid couplings in pumps, compressors, and drilling equipment. Rigid couplings offer consistent and dependable power transmission, which is essential for critical operations in this sector.
  • Marine: In marine applications, such as ship propulsion systems and marine pumps, rigid couplings are used to transmit power between the ship’s engine and various equipment. They can handle the dynamic forces and vibrations encountered in marine environments.
  • Aerospace: In aerospace applications, where precision and reliability are paramount, rigid couplings play a role in power transmission between various aircraft components.

Rigid couplings are chosen in these industries for their ability to maintain shaft alignment, resist misalignment, and provide a backlash-free connection. Their robust construction and simple design make them suitable for high torque and high-speed applications, where precision and efficiency are crucial.

rigid coupling

Materials Used in Manufacturing Rigid Couplings:

Rigid couplings are designed to provide a strong and durable connection between two shafts, and they are commonly made from a variety of materials to suit different applications. The choice of material depends on factors such as the application’s environment, load capacity, and cost considerations. Some common materials used in manufacturing rigid couplings include:

  • 1. Steel: Steel is one of the most widely used materials for rigid couplings. It offers excellent strength, durability, and resistance to wear. Steel couplings are suitable for a wide range of applications, including industrial machinery, automotive systems, and power transmission.
  • 2. Stainless Steel: Stainless steel couplings are used in applications where corrosion resistance is crucial. They are well-suited for environments with high humidity, moisture, or exposure to chemicals. Stainless steel couplings are commonly used in food processing, pharmaceuticals, marine, and outdoor applications.
  • 3. Aluminum: Aluminum couplings are known for their lightweight and corrosion-resistant properties. They are often used in applications where weight reduction is essential, such as aerospace and automotive industries.
  • 4. Brass: Brass couplings offer good corrosion resistance and are commonly used in plumbing and water-related applications.
  • 5. Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications and machinery.
  • 6. Bronze: Bronze couplings are known for their excellent wear resistance and are often used in applications involving heavy loads and low speeds.
  • 7. Plastics: Some rigid couplings are made from various plastics, such as nylon or Delrin. Plastic couplings are lightweight, non-conductive, and suitable for applications where electrical insulation is required.

It’s essential to consider the specific requirements of the application, including factors like load capacity, operating environment, and cost, when choosing the appropriate material for a rigid coupling. The right material selection ensures that the coupling can withstand the forces and conditions it will encounter, resulting in a reliable and long-lasting connection between the shafts.

China supplier Double Diaphragm Clamping Coupling Rigid Coupling Gl-32X41  China supplier Double Diaphragm Clamping Coupling Rigid Coupling Gl-32X41
editor by CX 2024-03-10