Product Description

 

CDU Ring Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Working pressure:1.6-4.0Mpa/6.4Mpa/10Mpa/1.0-2.5Mpa
Feature:1.easy to install, easy to disassemble, and 5-10 times higher work efficiency.2.The connection is flexible, effectively reduce mechanical vibration, and the seismic effect is excellent.3.It can rotate 360 degrees around the tube axis and adjust the wear surface easily.4.The sequence of pipe rows is arbitrary, and can be constructed head-to-head or separately.5.Wear resistance, corrosion resistance, long service life.
Applications:High pressure pipe system for underground coal mine, high pressure pipe system for industrial and mining, fire fighting pipe system for high-rise buildings.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

KRJ shoulder Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Working pressure:10Mpa/6.4Mpa/4Mpa/2.5Mpa/1.6Mpa.
Feature:Has a self-sealing effect.Reliable performance and easy installation.
Applications:Common pressure pipe system for underground coal mine, common pressure pipe system for industrial and mining, high-rise building fire pipe system.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

 

KRH short  Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Working pressure:1.0-10Mpa/1.0-2.5Mpa/1.0-1.6Mpa
Feature:Has a self-sealing effect.Reliable performance and easy installation.
Applications:Common pressure pipe system for underground coal mine, common pressure pipe system for industrial and mining, high-rise building fire pipe system.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

 

Grooved Flexible High Pressure Coupling
Construction:This coupling consists of shell, sealing rubber ring, bolt, nut, groove.
Size range:33~325mm
Working pressure:10Mpa
Feature:
1.Flexible connection, strong adaptability, can provide 0~4 degrees of deflection Angle.
               2.It has the function of shock absorption and heat expansion and contraction.
               3.The joint surface can be hot-dip galvanized or plasticized.
Applications:High pressure pipe system for underground coal mine, high pressure pipe system for industrial and mining, fire fighting pipe system for high-rise buildings.
Product standard:GB/T 8260-2008,GB/T 5135.11-2006.

 

 

FAQ

Q1. What is your terms of packing?

A: Generally, we pack our goods in neutral white wearable woven bags. If you have legally registered patent, 
we can pack the goods in your branded boxes after getting your authorization letters.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages 
before you pay the balance.

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will take 20 to 60 days after receiving your advance payment. The specific delivery time depends 
on the items and the quantity of your order.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

How Do Rigid Couplings Compare to Other Types of Couplings in Terms of Performance?

Rigid couplings offer specific advantages and disadvantages compared to other types of couplings, and their performance depends on the requirements of the application:

1. Performance: Rigid couplings provide excellent torque transmission capabilities and are best suited for applications that demand precise and efficient power transfer. They have minimal backlash and high torsional stiffness, resulting in accurate motion control.

2. Misalignment Tolerance: Rigid couplings cannot tolerate misalignment between shafts. They require precise shaft alignment during installation, which can be time-consuming and may result in increased downtime during maintenance or repairs.

3. Vibration Damping: Rigid couplings offer no damping of vibrations, which means they may not be suitable for systems that require vibration isolation or shock absorption.

4. Maintenance: Rigid couplings are generally low maintenance since they have no moving parts or flexible elements that can wear out over time. Once properly installed, they can provide reliable performance for extended periods.

5. Space Requirements: Rigid couplings are compact and do not add much length to the shaft, making them suitable for applications with limited space.

6. Cost: Rigid couplings are usually more economical compared to some advanced and specialized coupling types. Their simpler design and lower manufacturing costs contribute to their affordability.

7. Application: Rigid couplings are commonly used in applications where shafts are precisely aligned and no misalignment compensation is necessary. They are prevalent in precision machinery, robotics, and applications that require accurate motion control.

In contrast, flexible couplings, such as elastomeric, jaw, or beam couplings, are designed to accommodate misalignment, dampen vibrations, and provide some degree of shock absorption. Their performance is ideal for systems where shafts may experience misalignment due to thermal expansion, shaft deflection, or dynamic loads.

In summary, rigid couplings excel in applications that demand precise alignment and high torque transmission, but they may not be suitable for systems that require misalignment compensation or vibration damping.

rigid coupling

How Does a Rigid Coupling Handle Angular, Parallel, and Axial Misalignment?

Rigid couplings are designed to provide a fixed and rigid connection between two shafts. As such, they do not have any built-in flexibility to accommodate misalignment. Therefore, when using a rigid coupling, it is essential to ensure proper shaft alignment to avoid excessive forces and premature wear on connected equipment.

Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Rigid couplings cannot compensate for angular misalignment, and any angular misalignment should be minimized during installation. Precision alignment techniques, such as laser alignment tools, are often used to achieve accurate angular alignment.

Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the axes of the two shafts are parallel but have a lateral displacement from each other. Rigid couplings cannot accommodate parallel misalignment. Therefore, precise alignment is crucial to prevent binding and excessive forces on the shafts and bearings.

Axial Misalignment: Axial misalignment occurs when the two shafts have an axial (longitudinal) displacement from each other. Rigid couplings cannot address axial misalignment. To prevent thrust loads and additional stresses on bearings, it is essential to align the shafts axially during installation.

In summary, rigid couplings are unforgiving to misalignment and require precise alignment during installation. Any misalignment in a rigid coupling can lead to increased wear, premature failure of components, and reduced overall system efficiency. Therefore, it is crucial to use appropriate alignment techniques and tools to ensure optimal performance and longevity of the connected equipment.

rigid coupling

Materials Used in Manufacturing Rigid Couplings:

Rigid couplings are designed to provide a strong and durable connection between two shafts, and they are commonly made from a variety of materials to suit different applications. The choice of material depends on factors such as the application’s environment, load capacity, and cost considerations. Some common materials used in manufacturing rigid couplings include:

  • 1. Steel: Steel is one of the most widely used materials for rigid couplings. It offers excellent strength, durability, and resistance to wear. Steel couplings are suitable for a wide range of applications, including industrial machinery, automotive systems, and power transmission.
  • 2. Stainless Steel: Stainless steel couplings are used in applications where corrosion resistance is crucial. They are well-suited for environments with high humidity, moisture, or exposure to chemicals. Stainless steel couplings are commonly used in food processing, pharmaceuticals, marine, and outdoor applications.
  • 3. Aluminum: Aluminum couplings are known for their lightweight and corrosion-resistant properties. They are often used in applications where weight reduction is essential, such as aerospace and automotive industries.
  • 4. Brass: Brass couplings offer good corrosion resistance and are commonly used in plumbing and water-related applications.
  • 5. Cast Iron: Cast iron couplings provide high strength and durability, making them suitable for heavy-duty industrial applications and machinery.
  • 6. Bronze: Bronze couplings are known for their excellent wear resistance and are often used in applications involving heavy loads and low speeds.
  • 7. Plastics: Some rigid couplings are made from various plastics, such as nylon or Delrin. Plastic couplings are lightweight, non-conductive, and suitable for applications where electrical insulation is required.

It’s essential to consider the specific requirements of the application, including factors like load capacity, operating environment, and cost, when choosing the appropriate material for a rigid coupling. The right material selection ensures that the coupling can withstand the forces and conditions it will encounter, resulting in a reliable and long-lasting connection between the shafts.

China factory Ductile Iron Rigid or Flexible Coupling  China factory Ductile Iron Rigid or Flexible Coupling
editor by CX 2024-04-26