Product Description

Steel Material Rigid Shaft Flexible Spring Shaft Snake Grid Coupling

Description:

It is a kind of metal elastic variable stiffness coupling with advanced structure ,which transmits torque by serpentine spring plate embedded in the tooth groove of 2 half couplings ,mainly composed of 2 half couplings,two half covers,two sealing rings and serpentine spring plate.

 

Feature

1.The serpentine spring as the elastic element, the elastic strong at the same time, greatly improves the grid coupling torque, widely used in heavy machinery and general    machinery.The serpentine spring special technology department, has long service life, allowing higher speed, has good ability to compensate in the axial, radial and angle

2.High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, operation safety.

3.Simple structure, convenient assembly and disassembly, long service life.

4.Damping effect is good to avoid the resonance.

Details


 

Basic Parameter

 

Model Nominal Speed Y,Z Bore L L2 D C KG    
Torque r/min d1,d2 J Grease
Nm   Max Min KG.M2 Kg
JS1 45 4500 28 18 47 66 95 3 1.91 0.00141 0.5712
JS2 140 35 22 47 68 105 2.59 0.057123 0.0408
JS3 224 42 25 50 70 115 3.36 0.00327 0.0544
JS4 400 50 32 60 80 130 5.45 0.00727 0.068
JS5 630 4350 56 40 63 92 150 7.26 0.00119 0.0862
JS6 900 4125 65 40 76 95 160 10.44 0.0185 0.113
JS7 1800 3600 80 55 89 116 190 17.7 0.571 0.172
JS8 3150 95 65 98 122 210 25.42 0.0787 0.254
JS9 5600 2440 110 75 120 155 250 5 42.22 0.178 0.426
JS10 8000 2250 120 85 127 162 270 54.45 0.27 0.505
JS11 12500 2571 140 90 149 192 310 6 81.27 0.514 0.735
JS12 18000 1800 170 110 162 195 346 121 0.989 0.908
JS13 25000 1650 200 120 184 201 384 178 1.85 1.135
JS14 35500 1500 200 140 183 271 450 234.26 3.49 1.952
JS15 50000 1350 240 160 198 279 500 316.89 5.82 2.815
JS16 63000 1225 280 180 216 304 566 6 448.1 10.4 3.496
JS17 90000 1100 300 200 239 322 630 619.71 18.3 3.76
JS18 125000 1050 320 240 260 356 675 776.34 26.1 4.4
JS19 160000 900 360 280 280 355 756 1058.27 43.5 5.63
JS20 224000 820 380 300 305 432 845 13 1425.56 75.5 10.53
JS21 315000 730 420 320 325 490 920 1786.49 113 16.07
JS22 400000 680 450 340 345 546 1000 2268.64 175 24.06
JS23 500000 630 480 360 368 648 1087 2950.82 339 33.82
JS24 630000 580 460 400 401 698 1180 3936.3 524 50.17
JS25 800000 540 500 420 432 762 1260 4686.19 711 67.24

 

Production workshop

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

rigid coupling

Can Rigid Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, rigid couplings can be used in both horizontal and vertical shaft arrangements. Rigid couplings are designed to provide a solid, non-flexible connection between two shafts, making them suitable for various types of shaft orientations.

Horizontal Shaft Arrangements: In horizontal shaft arrangements, the two shafts are positioned parallel to the ground or at a slight incline. Rigid couplings are commonly used in horizontal setups as they efficiently transmit torque and maintain precise alignment between the shafts. The horizontal orientation allows gravity to aid in keeping the coupling elements securely in place.

Vertical Shaft Arrangements: In vertical shaft arrangements, the two shafts are positioned vertically, with one shaft above the other. This type of setup is often found in applications such as pumps, compressors, and some gearboxes. Rigid couplings can also be used in vertical shaft arrangements, but additional considerations must be taken into account:

  • Keyless Design: To accommodate the vertical orientation, some rigid couplings have a keyless design. Traditional keyed couplings may experience issues with keyway shear due to the force of gravity on the key, especially in overhung load situations.
  • Set Screw Tightening: When installing rigid couplings in vertical shaft arrangements, set screws must be tightened securely to prevent any axial movement during operation. Locking compound can also be used to provide additional security.
  • Thrust Load Considerations: Vertical shaft arrangements may generate thrust loads due to the weight of the equipment and components. Rigid couplings should be chosen or designed to handle these thrust loads to prevent axial displacement of the shafts.

It’s essential to select a rigid coupling that is suitable for the specific shaft orientation and operating conditions. Proper installation and alignment are critical for both horizontal and vertical shaft arrangements to ensure the rigid coupling’s optimal performance and reliability.

rigid coupling

What Role Does a Rigid Coupling Play in Reducing Downtime and Maintenance Costs?

A rigid coupling can play a significant role in reducing downtime and maintenance costs in mechanical systems by providing a robust and reliable connection between two shafts. Here are the key factors that contribute to this:

1. Durability and Longevity: Rigid couplings are typically made from high-quality materials such as steel or stainless steel, which offer excellent durability and resistance to wear. As a result, they have a longer service life compared to some other types of couplings that may require frequent replacements due to wear and fatigue.

2. Elimination of Wear-Prone Components: Unlike flexible couplings that include moving parts or elements designed to accommodate misalignment, rigid couplings do not have any wear-prone components. This absence of moving parts means there are fewer components that can fail, reducing the need for regular maintenance and replacement.

3. Minimization of Misalignment-Related Issues: Rigid couplings require precise shaft alignment during installation. When installed correctly, they help minimize misalignment-related issues such as vibration, noise, and premature bearing failure. Proper alignment also reduces the risk of unexpected breakdowns and maintenance requirements.

4. Increased System Efficiency: The rigid connection provided by a rigid coupling ensures efficient power transmission between the two shafts. There is minimal power loss due to flexing or bending, leading to better overall system efficiency. This efficiency can result in reduced energy consumption and operating costs.

5. Low Maintenance Requirements: Rigid couplings generally require minimal maintenance compared to some other coupling types. Once properly installed and aligned, they can operate for extended periods without needing frequent inspection or adjustment.

6. Reduced Downtime: The robust and reliable nature of rigid couplings means that they are less likely to fail unexpectedly. This increased reliability helps reduce unscheduled downtime, allowing the mechanical system to operate smoothly and consistently.

7. Cost-Effective Solution: While rigid couplings may have a higher upfront cost than some other coupling types, their long-term durability and low maintenance requirements make them a cost-effective solution over the life cycle of the equipment.

In conclusion, a rigid coupling’s ability to provide a durable and dependable connection, along with its low maintenance requirements and efficient power transmission, contributes significantly to reducing downtime and maintenance costs in mechanical systems.

rigid coupling

What is a Rigid Coupling and How Does it Work?

A rigid coupling is a type of mechanical coupling used to connect two shafts together at their ends to transmit torque and rotational motion without any flexibility or misalignment accommodation. Unlike flexible couplings, rigid couplings do not allow for angular, parallel, or axial misalignment between the shafts. The main purpose of a rigid coupling is to provide a strong and solid connection between two shafts, ensuring precise and synchronous power transmission between them.

Structure and Design:

Rigid couplings are typically made from durable materials such as steel, stainless steel, or aluminum, which can withstand high torque and load applications. The coupling consists of two halves, each with a cylindrical bore that fits tightly onto the respective shafts. The two halves are then fastened together using bolts or set screws to ensure a secure and rigid connection.

Working Principle:

The working principle of a rigid coupling is straightforward. When the two shafts are aligned precisely and the coupling is securely fastened, any torque applied to one shaft gets directly transferred to the other shaft. The rigid coupling essentially makes the two shafts act as one continuous shaft, allowing for synchronous rotation without any relative movement or play between them.

Applications:

Rigid couplings are commonly used in applications where precise alignment and torque transmission are essential. Some common applications of rigid couplings include:

  • High-precision machinery and equipment
  • Robotics and automation systems
  • Precision motion control systems
  • Machine tools
  • Shaft-driven pumps and compressors

Advantages:

The key advantages of using rigid couplings include:

  • High Torque Transmission: Rigid couplings can handle high torque and power transmission without any loss due to flexibility.
  • Precision: They provide accurate and synchronous rotation between the shafts, making them suitable for precise applications.
  • Simple Design: Rigid couplings have a simple design with minimal moving parts, making them easy to install and maintain.
  • Cost-Effective: Compared to some other coupling types, rigid couplings are generally more cost-effective.

Limitations:

Despite their advantages, rigid couplings have certain limitations:

  • No Misalignment Compensation: Rigid couplings cannot accommodate any misalignment between the shafts, making precise alignment during installation crucial.
  • Transmits Vibrations: Since rigid couplings do not dampen vibrations, they can transmit vibrations and shocks from one shaft to the other.
  • Stress Concentration: In some applications, rigid couplings can create stress concentration at the ends of the shafts.

In summary, rigid couplings are ideal for applications that require precise alignment and high torque transmission. They offer a robust and straightforward solution for connecting shafts and ensuring synchronous power transmission without any flexibility or misalignment accommodation.

China Custom Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling  China Custom Custom Steel Material Rigid Shaft Flexible Spring Shaft Coupling Snake Grid Coupling
editor by CX 2024-04-04