Product Description
Product Description
1nuo /YINUO Pipe Fittings Standard Grooved Pipe Fittings grooved coupling
production process
A rough castings of grooved fittings will be processed and produced by electric-furnice smelting,on-line monitoring and control and automatic molding methods.
Product Parameters
1. High Pressure Coupling Specification:
Size | Pipe O.D | Working Pressure | Bolt Size |
mm/in | PSI/MPa | No.-Size mm | |
25 1 |
33.7 1.327 |
750 5.17 |
2-M10*45 |
32 1¼ |
42.4 1.669 |
750 5.17 |
2-M10*45 |
40 1 1/2 |
48.3 1.900 |
750 5.17 |
2-M10*45 |
50 2 |
60.3 2.375 |
750 5.17 |
2-M10*55 |
65 2 1/2 |
73 2.875 |
750 5.17 |
2-M10*55 |
65 3OD |
76.1 3.000 |
300 2.07 |
2-M10*55 |
80 3 |
88.9 3.500 |
750 5.17 |
2-M10*60 |
100 4 |
114.3 4.500 |
750 5.17 |
2-M10*65 |
125 5.5OD |
139.7 5.500 |
750 5.17 |
2-M10*75 |
150 6 OD |
165.1 6.500 |
750 5.17 |
2-M10*75 |
150 6 |
168.3 6.625 |
750 5.17 |
2-M10*75 |
200 8 |
219.1 8.625 |
750 5.17 |
2-M10*100 |
250 10 |
273.0 10.748 |
750 5.17 |
2-M10*130 |
300 12 |
323.9 12.752 |
750 5.17 |
2-M10*130 |
Product Details
Material | Ductile Iron-ASTM A536 |
Thread Standard | BSPT/ BSPP/ NPT |
Bolt and Nut | Cold Heading Steel- Gold color |
Pressure | 750 CZPT – 5.17Mpa |
Finish | Epoxy/ Painted / Galvanized |
Color | Ral 3000 Red / Orange/ Blue/ White |
Brand | 1NUO |
Package | Cartons with Pallet / Wooden Case |
Delivery Time | 20-40 days as per ever order |
Capacity | Four Automatic Vertical Production Lines |
Application | 1. fire fighting& fire sprinkler system for commercial and civil fire protection construction, such as water supplying, gas supplying, air-conditioning etc. |
2. Industrial pipeline system in shipping, mine, oil field, cement, mine piping , chemical plant etc. | |
3. Ordinary piping delivery in sewage treatment, Subway station, airport etc. |
Gasket:
Gasket | Material | Temperature Range | Recommendations |
E | EPDM | -34ºC~ +110ºC | Recommended for hot water, dilute acid, oil-free gas and other chemicals(except for hydrocarbon ) within the specified temperature range. Not recommended for petroleum and hydrocarbon. |
D | NBR | -29ºC~ +82ºC | Recommended for petroleum products, gas with oil vapors, mineral oil and vegetable oil. Not recommended for high temperature materials. |
S | Silicon Rubber | -40ºC~ +177ºC | Recommended for high temperature and dry air, and some high temperature chemicals. |
Certifications
FM Approved&UL Listed&CE Certificate
Packaging & Shipping
To better ensure the safety of your goods, professional, environmentally friendly, convenient and efficient packaging services will be provided.
Company Profile
HangZhou CZPT has strong technical strength and possesses the world’s first-class equipment and technology, as well as perfect testing methods. All rough castings of grooved fittings will be processed and produced by electric-furnace smelting, on-line monitoring and control and automatic molding methods. Now our facilities include 11 medium frequency furnace, 4 advanced vertical parting molding lines and 3 painting lines. Every customer’s requirements can be satisfied by customized services.
Yinuo’s ductile iron grooved fittings have successively passed the China national type test, ISO 9001 and FM&UL approvals etc. Our products are underwritten by China Ping An Insurance(Group) Co.,Ltd. The grooved pipe fittings are widely used in fire fighting, air-conditioning, water supply, sewage, cement, low-pressure steaming, mine piping and ordinary piping delivery.
ø Corporate Vision: Where there is pipes, there is YINUO.
ø Corporate Mission: Connecting pipeline around the world, benefiting homes in every building.
ø Competitive Strategy: To supply market with perfect products, to win customers with excellent service.
ø Core Value: Pragmatic honesty, quality first, continuous innovation and CZPT cooperation.
ø Quality Value: We survive with quality and develop by technology.
Range of products
Rigid coupling, Flexible coupling, 90° Elbow, 45° Elbow, 22.5° Elbow, 11.25° Elbow, Tee, Reducing Tee(Grooved/Threaded), Cross, Reducing Cross(Grooved/Threaded), Mechnical Tee(Grooved/Threaded), Mechnical Cross(Grooved/Threaded), U-bolted Mechnical Tee, Reducer(Grooved/Threaded), Grooved Eccentric Reducer, Grooved Split Flange, Grooved Adaptor Flange, Cap.
Application: As 1 of the most popular fittings in fire fighting systems, the grooved pipe fittings are widely used in fire fighting, air-conditioning, water supply, sewage, cement, oil&gas pipeline, mine piping and ordinary piping delivery. CZPT is spreading all over the world and winning the appreciations from users at home and abroad.
FAQ
Q1. Are you manufactrer?
A: Yes, we are manufacturing&trading combo.
Q2. What are your terms of delivery?
A: EXW, FOB, CFR, CIF.
Q3. What is your delivery time?
A: The time of delivery is around 15-20 days, depending on order quantity.
Q4: Can you provide us with some samples for testing?
A: Of course, we can offer you samples. The sample is free, you only need to bear the freight.
Q5. What is your payment terms?
A: We accept 30% T/T in advance, 70% in the period of shipment or L/C at sight.
Q6. Could you specially design and produce for clients?
A: Sure, we have all kinds of professional engineers.We can design and produce special products according to customers’ request. Such as: special size, special control, OEM, etc.
How Do Rigid Couplings Compare to Other Types of Couplings in Terms of Performance?
Rigid couplings offer specific advantages and disadvantages compared to other types of couplings, and their performance depends on the requirements of the application:
1. Performance: Rigid couplings provide excellent torque transmission capabilities and are best suited for applications that demand precise and efficient power transfer. They have minimal backlash and high torsional stiffness, resulting in accurate motion control.
2. Misalignment Tolerance: Rigid couplings cannot tolerate misalignment between shafts. They require precise shaft alignment during installation, which can be time-consuming and may result in increased downtime during maintenance or repairs.
3. Vibration Damping: Rigid couplings offer no damping of vibrations, which means they may not be suitable for systems that require vibration isolation or shock absorption.
4. Maintenance: Rigid couplings are generally low maintenance since they have no moving parts or flexible elements that can wear out over time. Once properly installed, they can provide reliable performance for extended periods.
5. Space Requirements: Rigid couplings are compact and do not add much length to the shaft, making them suitable for applications with limited space.
6. Cost: Rigid couplings are usually more economical compared to some advanced and specialized coupling types. Their simpler design and lower manufacturing costs contribute to their affordability.
7. Application: Rigid couplings are commonly used in applications where shafts are precisely aligned and no misalignment compensation is necessary. They are prevalent in precision machinery, robotics, and applications that require accurate motion control.
In contrast, flexible couplings, such as elastomeric, jaw, or beam couplings, are designed to accommodate misalignment, dampen vibrations, and provide some degree of shock absorption. Their performance is ideal for systems where shafts may experience misalignment due to thermal expansion, shaft deflection, or dynamic loads.
In summary, rigid couplings excel in applications that demand precise alignment and high torque transmission, but they may not be suitable for systems that require misalignment compensation or vibration damping.
How Does a Rigid Coupling Handle Angular, Parallel, and Axial Misalignment?
Rigid couplings are designed to provide a fixed and rigid connection between two shafts. As such, they do not have any built-in flexibility to accommodate misalignment. Therefore, when using a rigid coupling, it is essential to ensure proper shaft alignment to avoid excessive forces and premature wear on connected equipment.
Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not collinear and form an angle with each other. Rigid couplings cannot compensate for angular misalignment, and any angular misalignment should be minimized during installation. Precision alignment techniques, such as laser alignment tools, are often used to achieve accurate angular alignment.
Parallel Misalignment: Parallel misalignment, also known as offset misalignment, happens when the axes of the two shafts are parallel but have a lateral displacement from each other. Rigid couplings cannot accommodate parallel misalignment. Therefore, precise alignment is crucial to prevent binding and excessive forces on the shafts and bearings.
Axial Misalignment: Axial misalignment occurs when the two shafts have an axial (longitudinal) displacement from each other. Rigid couplings cannot address axial misalignment. To prevent thrust loads and additional stresses on bearings, it is essential to align the shafts axially during installation.
In summary, rigid couplings are unforgiving to misalignment and require precise alignment during installation. Any misalignment in a rigid coupling can lead to increased wear, premature failure of components, and reduced overall system efficiency. Therefore, it is crucial to use appropriate alignment techniques and tools to ensure optimal performance and longevity of the connected equipment.
Advantages of Using Rigid Couplings in Mechanical Systems:
Rigid couplings offer several advantages when used in mechanical systems. These advantages make them a preferred choice in certain applications where precise alignment and high torque transmission are essential. Here are the key advantages of using rigid couplings:
- 1. High Torque Transmission: Rigid couplings are designed to handle high torque and power transmission without any loss due to flexibility. They provide a direct and solid connection between shafts, allowing for efficient transfer of rotational motion.
- 2. Precise Alignment: Rigid couplings maintain precise alignment between connected shafts. When installed correctly, they ensure that the two shafts are perfectly aligned, which is crucial for applications where accurate positioning and synchronization are required.
- 3. Synchronous Rotation: The rigid connection provided by these couplings enables synchronous rotation of the connected shafts. This is particularly important in applications where components must move in precise coordination with each other.
- 4. Simple Design: Rigid couplings have a straightforward design with minimal moving parts. This simplicity makes them easy to install and maintain, reducing the chances of mechanical failure.
- 5. Cost-Effective: Compared to some other coupling types, rigid couplings are generally more cost-effective. Their simple design and robust construction contribute to their affordability.
- 6. High Strength and Durability: Rigid couplings are typically made from strong and durable materials such as steel, stainless steel, or aluminum. These materials can withstand heavy loads and provide long-lasting performance in demanding applications.
Rigid couplings are commonly used in various industries and applications, including high-precision machinery, robotics, automation systems, precision motion control, and machine tools. They are especially beneficial in scenarios where misalignment needs to be minimized or avoided altogether.
It’s important to note that while rigid couplings offer these advantages, they are not suitable for applications where shaft misalignment or shock absorption is required. In such cases, flexible couplings or other specialized coupling types may be more appropriate.
editor by CX 2023-08-14